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ABSTRACT—Smart transmission grid is envisioned to operate more efficiently as compared to the existing grid. About 10% of the total 

generation is dissipated in the form of transmission losses. Future load growth demands installation of new generation plants which can be 

deferred through released capacity from the efficient operation of the existing grid. This paper demonstrates the application of fully informed 

particle swarm optimization (FIPSO) in transmission loss reduction. The control parameters considered to achieve this objective include 

generator voltage magnitude control, generator active power control, static var compensators (SVCs) reactive power control, and on-load 

tap changers (OLTCs) tap-position control. The simulation study is performed using Ward-Hale 6-bus system and standard IEEE 30-bus 

system. Comparison with other algorithms suggests the FIPSO as a potential candidate for the future operation of the transmission grid.    

 
Index Terms— Fully informed particle swarm optimization (FIPSO), Heuristic search methods, Optimal power flow (OPF), Power 

transmission loss, Smart transmission grid. 

I.  INTRODUCTION 

The transmission system is meant to transmit electrical energy 

from the generation plants to the load centers. Generation 

plants can be located several hundred kilometers far from the 

load centers. Resistance of the transmission line increases 

linearly with the length. Therefore, the power loss occurring 

across the transmission lines increases. Transmission losses 

are typically 10% of the total generation [1]. New generation 

plants needs to be installed in order to cater the future load 

growth. Smart transmission grid [2] is envisioned to release 

the capacity by operating efficiently. This efficient operation 

will reduce the power transmission losses and will defer the 

need of immediate installation of new generation plants. Ad-

ditionally, revenue of transmission companies will be in-

creased as they will purchase less power from the generation 

companies. 

 Energy management system (EMS) [3] is the real-time 

monitoring and decision support tool for the transmission 

systems. It receives the time-stamp input monitoring signals 

from the phasor measurement units (PMUs). Decision support 

tool will compute the required control actions using optimal 

power flow (OPF). The OPF [4] is an important optimization 

problem in the electric power system. It can be single- or mul-

ti- objective optimization problem. Some of the potential op-

timization objectives include minimum shift of generation 

from some optimum point, reduction of fuel emissions, reduc-

tion of transmission losses, and reduction of generation cost. 

According to [5], the process of reducing the resistance for 

power transmission loss reduction using physical changes 

such as reconductoring and installation of additional trans-

mission circuits is a costly solution and requires longer time 

to implement. The paper suggested the OPF based voltage 

related adjustments as an effective solution.      

The fully informed particle swarm optimization (FIPSO) 

was introduced in 2004 [6]. It is the variant of conventional 

particle swarm optimization (PSO). The PSO is one of the 

most prominent heuristic optimization algorithms available. It 

has the ability of parallel computation which makes it fast, 

robust, and an ideal candidate for the real-time or near real-

time applications. The FIPSO differs from the conventional 

PSO in the sense that it updates its velocity in each iteration 

by accounting the information available from all the neigh-

borhood particles rather than considering only the best parti-

cle. This strategy makes it fully informed.  

The objective function of the OPF problem can be computed 

using analytical techniques as well as heuristic optimization 

techniques. Differential evolution PSO [7], which is a blend 

of PSO and differential evolution methods, is used for reduc-

ing transmission losses in the power system. Here, differential 

evolution PSO resulted in high quality solution with small 

computational time as compared to several other heuristic and 

conventional methods. Similarly, the cost minimization [8] is 

performed by using the conventional PSO. The interior point 

method [9], an analytical technique, can be used for the solu-

tion of constrained optimal power flow. The OPF [10] incor-

porating flexible AC transmission system (FACTS) devices 

can optimize the power flow without requiring the generation 

rescheduling.    

This paper presents the application of FIPSO for transmission 

losses reduction. The control variables considered are genera-

tor voltage magnitude control, generator active power control, 

static var compensators (SVCs) reactive power control, and 

on-load tap changers (OLTCs) tap-position control. The simu-

lation studies are performed using Ward-Hale 6-bus system 

[11] and IEEE 30-bus system.  

II.  PROBLEM FORMULATION 

Power losses are distributed over branches in the transmis-

sion system. Simple addition of losses occurring in each 

branch will result in total losses occurring in the entire trans-

mission system. Mathematically, it can be expressed as: 

      ∑   
 
                          (1) 

where PLoss is total transmission losses, N is the total number 

of branches in transmission lines, and Pi is the ith branch loss. 

 Equation (1) is subjected to various equality and inequality 

constraints. Equality constraints include active and reactive 

power flow equations. Performing load flow analysis will 

ensure the compliance of the equality constraints. Inequality 

constraints on control variables include generator voltage 

limits, generator active power limits, SVCs’ reactive power 

limits, and OLTCs’ tap-position limits. The deviations of the 

state variables from the desired values can be accounted for 

by using penalty function approach which can be added in 
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Table I 

FIPSO-OPF for Ward-Hale 6-bus System 

Iter. T SD AVG MAX MIN 

5 

15 0.0969 7.8853 8.1429 7.7541 

30 0.0798 7.8166 7.9766 7.6920 

40 0.0545 7.8017 7.8872 7.6896 

15 

15 0.0456 7.7308 7.8530 7.6698 

30 0.0242 7.6954 7.7351 7.6464 

40 0.0198 7.6893 7.7192 7.6422 

25 

15 0.0449 7.7064 7.8131 7.6548 

30 0.0434 7.6982 7.8150 7.6462 

40 0.0238 7.6654 7.7079 7.6020 

35 

15 0.0519 7.6966 7.8482 7.6309 

30 0.0420 7.6539 7.7133 7.5383 

40 0.0394 7.6556 7.7133 7.5598 

45 

15 0.0631 7.6691 7.8300 7.5787 

30 0.0377 7.6456 7.7243 7.5735 

40 0.0442 7.6377 7.7036 7.5450 

 

(1). 

The particles in conventional PSO update their position and 

velocity vectors by considering the information provided by 

the single best informant in their neighborhood. Over trusting 

the single best informant can lead to sub-optimal solution. 

The FIPSO was introduced as a variant of PSO in 2004. In 

FIPSO, the particle updates its velocity by considering each 

and every particle present in the swarm rather than just the 

best one. The velocity update equation for k
th

 particle and d
th
 

dimension can be mathematically expressed as: 

         [      ∑
 (   )  (     ( )     )

 

 
   ]         (2) 

where cc is the constriction coefficient, M is the total number 

of informants, U(0,δ) is the uniformly distributed random 

numbers between 0 and constant δ, and ppk,d(n) is the best po-

sition attained by i
th

 informant of particle k so far. 

III.  INTEGRATING FIPSO WITH OPF 

The OPF has objective function along with control variables, 

state variables, and fixed parameters of the transmission sys-

tem. The control variables can be adjusted to any value within 

their limits. Following the adjustments of the control varia-

bles, the state variables will adjust themselves accordingly 

and their current values can be determined by running the 

load flow program. The active power transmission loss can be 

computed after the determination of the values of the control 

variables, state variables, and fixed parameters. The fixed 

parameters include various entities such as reactance of 

transmission line.  

The OPF handles the inequality constraints on control and 

state variables. The set-to-middle approach (SMA) is used for 

control variables during limit violations. The SMA will put 

the control variable in the middle of its lower and upper lim-

its. This approach seems to yield better results as compared to 

the conventional approach of putting the variable to either at 

upper or lower limit. After executing SMA, the velocity of the 

corresponding particle will be set to zero value. Penalty func-

tion can be used to tackle the inequality constraints on state 

variables.  

The centralized control scheme is used. It is assumed that all 

the monitoring signals will be fed to central controller under 

EMS. The optimization engine of the EMS will use the 

FIPSO-OPF to determine the optimal values while satisfying 

the equality and inequality constraints. The optimal values of 

control variables will result in minimum power transmission 

loss.  

A comprehensive flowchart depicting the integration of 

FIPSO with OPF is shown in fig. 1. Total number of itera-

tions is indicated by H, swarm size is indicated by T, current 

particle is represented by g, and current iteration is represent-

ed by h.  

The objective function will be evaluated multiple times dur-

ing the optimization process as is apparent from fig. 1. The 

stopping criteria can be either the maximum number of itera-

tions or the computation of tolerance after each iteration. In 

case of maximum number of iterations as a stopping criterion, 

the total number of computation of objective function is equal 

to the product of total number of particles and the total num-

ber of iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Fig. 1. Complete Flowchart of FIPSO-OPF 
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Fig. 2. Characteristic of FIPSO-OPF w.r.t SD in power loss 

 
Fig. 3. Characteristic of FIPSO-OPF w.r.t average power loss 

IV.  SIMULATION STUDIES AND RESULTS 
The simulation studies are performed to test the FIPSO-PSO 

algorithm using Ward-Hale 6-bus system and standard IEEE 

30-bus system. The authenticity of the computed results is 

ensured by performing twenty successive trials for each in-

stance. We performed successive trials as these include all the 

worst and best results rather than performing more than twen-

ty trials and selecting the best twenty among them.  

Possible criteria for performance evaluation of FIPSO-OPF 

include minimum power loss, maximum power loss, average 

power loss, and standard deviation (SD) in power loss. Con-

sidering standard deviation (SD) or average power loss alone 

can lead to misleading interpretation of results. We have con-

sidered both average power loss and SD in power loss for the 

performance evaluation. The implementation of FIPSO-OPF 

algorithm is meant to decrease the power losses occurring in 

the transmission system. Initial active power loss was 

15.29MW and 17.59MW for Ward-Hale 6-bus system and 

IEEE 30-bus system respectively.  

The results of FIPSO-OPF for Ward-Hale 6-bus system are 

summarized in Table I. Several distinct number of iterations 

and swarm sizes are used to compute the results. All the pow-

er losses are mentioned in MW. The minimum power loss of 

7.5383MW occurs for swarm size of 30 at iteration 35. The 

minimum value of average power loss is 7.6377MW for 

swarm size of 40 at iteration 45. This depicts the efficiency of 

FIPSO-OPF algorithm as it reduced the power loss from the 

initial value of 15.29MW. 

Fig. 2 shows the relationship of SD in power loss with swarm 

size and number of iterations. It is apparent from the graph 

that increasing the swarm size decreases the SD in power 

loss. The smaller the SD in power loss is, the consistent the 

results of FIPSO-OPF algorithm is. It is well known that 

FIPSO will result in near-global solution as compared to the 

global one. In case of analytical or deterministic approach, we 

can get absolute global solution while heuristic techniques 

like FIPSO will yield near-global result. Smaller value of SD 

will ensure that FIPSO-OPF will yield near-global solution 

almost each time. 

Fig. 3 shows the relationship of average power loss with 

swarm size and number of iterations. It is apparent from the 

graph that increasing the swarm size decreases average power 

loss. Moreover, increasing the number of iterations up to 15 

results in a very rapid fall of average power loss. After itera-

tion 15, the increase in the number of iterations results only in 

modest decrease in power loss. The swarm size of 20 to 40 is 

suggested to be sufficient for every type of optimization prob-

lem [12]. Considering the swarm size more than 40 will most 

probably result in the increase of computational time with 

only slight improvement in performance. This demands a 

trade-off between computational time and desired level of 

improvement in result. This trade-off becomes critical for 

real-time or near real-time operations. 

The results of FIPSO-OPF for IEEE 30-bus system are sum-

marized in Table II. Again, several distinct number of itera-

tions and swarm sizes are used to compute the results. All the 

power losses are mentioned in MW. The minimum power loss 

of 3.7319MW occurs for swarm size of 30 at iteration 25. The 

minimum value of average power loss is 3.8987MW for 

swarm size of 40 at iteration 45. The minimum value of max-

imum power loss is 4.0887MW for swarm size of 30 at itera-

tion 45. This depicts the efficiency of FIPSO-OPF algorithm 

as it reduced the power loss from the initial value of 

17.59MW.  
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Fig. 2. Characteristic of FIPSO-OPF w.r.t SD in power loss 

 
Fig. 4. Characteristic of FIPSO-OPF w.r.t SD in power loss 

 
Fig. 5. Characteristic of FIPSO-OPF w.r.t average power loss 

Fig. 4 shows the relationship of SD in power loss with swarm 

size and number of iterations. It can be observed that increas-

ing the swarm size decreases the SD in power loss. The 

smaller the SD in power loss is, the consistent the results of 

FIPSO-OPF algorithm is. Fig. 5 shows the relationship of 

average power loss with swarm size and number of iterations. 

It can be seen that increasing the swarm size decreases aver-

age power loss. Moreover, increasing the number of iterations 

up to 15 results in a very rapid fall of average power loss. 

After iteration 15, the increase in the number of iterations 

results only in modest decrease in power loss. When compar-

ing it with fig. 3, it is interesting to note that the pattern is 

almost similar for both Ward-Hale 6-bus system and IEEE 

30-bus system. This comparison also indicates the accuracy 

of the implementation as well as the suitability of FIPSO-OPF 

algorithm for practical power system operation. 

The optimal settings of control variables required to achieve 

the minimum power transmission loss in Ward-Hale 6-bus 

system are summarized in Table III. Similar optimal settings 

for IEEE 30-bus system are summarized in Table IV. These 

settings are of practical nature. By configuring the power sys-

tem control to these values will result in minimum power loss 

provided the same load is existing as was used during this 

simulation study. These control settings will be changed with 

load variations. 

V.  DISCUSSION 
The twenty successive trials for the computation of each in-

stance indicate the authenticity of the results computed. It is 

established that increasing the number of iterations resulted in 

lower value of power transmission loss. Similarly, increasing 

the swarm size also resulted in lower value of power loss. The 

consistent and reliable results are required for the OPF as it is 

a real-time optimization problem. The consistency can be 

established by having the lower value of standard deviation in 

power loss. The reliability can be ensured by having the lower 

value of average power loss. Combine analysis of SD and 

average power loss will indicate the true picture of the per-

formance of FIPSO-OPF.       

A comparison with other optimization techniques can in-

dicate the potential of FIPSO for OPF problem. For IEEE 30-

bus system, reference [13] computed 6.49MW, 4.27MW, and 

4.98MW of minimum power loss using EP, PSO, and NCPSO 

respectively. These results are much greater than 3.7319MW 

using FIPSO-OPF. Similarly, reference [8] used PSO to com-

pute minimum power loss of 6.23MW for IEEE 30-bus sys-

tem which is greater than FIPSO-OPF result. For Ward-Hale 

6-bus system, reference [11] used Power Loss Minimization 

(PLM) and computed 8.47MW of minimum power loss which 

is on higher side as compared to 7.5383MW using FIPSO-

OPF. These improved results are depicting the efficiency of 

FIPSO as well as the effectiveness of set-to-middle approach 

used in this research work instead of set-to-limit approach for 

control variables violating the limits. 

VI.  CONCLUSION 
Smart transmission grid is envisioned to operate more effi-

ciently as compared to the existing grid. This paper demon-

strates the application of fully informed particle swarm opti-

mization (FIPSO) in transmission loss reduction. The control 

parameters considered to achieve this objective include on-

load tap changers (OLTCs) tap-position control, static var 

compensators (SVCs) reactive power control, generator active 

power control, and generator voltage magnitude control. The 

simulation study is performed using Ward-Hale 6-bus system 

and standard IEEE 30-bus system. Comparison with other 

algorithms suggests the FIPSO as a potential candidate for the 

future operation of the transmission grid. Sufficient power 

Table II 

FIPSO-OPF for IEEE 30-bus System 

Iter. T SD AVG MAX MIN 

5 

18 0.3150 4.6931 5.2510 4.2843 

30 0.2172 4.6298 4.9815 4.2981 

40 0.2257 4.4702 4.8179 3.9906 

15 

18 0.0871 4.1127 4.2601 3.9354 

30 0.1297 4.0652 4.3431 3.8412 

40 0.1315 4.0606 4.3223 3.8243 

25 

18 0.1358 4.0996 4.3842 3.8234 

30 0.1125 3.9874 4.1499 3.7319 

40 0.1118 3.9648 4.2090 3.7320 

35 

18 0.1008 4.0003 4.2125 3.7992 

30 0.0979 3.9700 4.0989 3.7943 

40 0.0891 3.9601 4.1208 3.8059 

45 

18 0.0893 4.0000 4.1602 3.8406 

30 0.0989 3.9304 4.0887 3.6908 

40 0.0913 3.8987 4.1268 3.7371 
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loss reduction as compared to the other techniques advocates 

the FIPSO to be integrated into the OPF problem. We can 

conclude that FIPSO is an ideal candidate for OPF problem.    

REFERENCES 

[1] Bergen, Vittal, Power System Analysis, 2nd ed., Prentice 

Hall, 1999. 

[2] M. Edmonds and T. Miller, "The next 50 years: What's 

next for the grid?," IEEE Power and Energy Magazine, 

vol. 12, pp. 92-96, Apr. 2014. 

[3] Ebrahim Vaahedi, Practical Power System Operation, 

1st Ed., John Wiley & Sons, 2014.   

[4] Allen J. Wood, Bruce F. Wollenberg, and Gerald B. She-

ble, Power Generation Operation and Control, 3rd ed., 

John Wiley & Sons, 2014. 

[5] J.H. Gurney, Rodolfo J. Koessler, Jai S.Mumick, F.S. 

Prabhakara, and Gang Shen, “Loss reduction opportuni-

ties in EHV transmission systems”, in Proc. 2009 IEEE 

Power & Energy Society General Meeting, pp. 1-7. 

[6] R. Mendes, J. Kennedy, and J. Neves, “The fully in-

formed particle swarm: Simpler, maybe better”, IEEE 

Transactions on Evolutionary Computation, vol. 8, no. 3, 

pp. 204-210, Jun. 2004. 

[7] K.Vaisakh, M.Sridhar, and K.S.Linga Murthy, “Differen-

tial evolution particle swarm optimization algorithm for 

reduction of network loss and voltage instability”, in 

Proc. 2009 World Congress on Nature & Biologically In-

spired Computing, pp. 391–396. 

[8] Swarnkar, Wadhwani, and S.Wadhwani, “Optimal power 

flow of large distribution system solution for combined 

economic emission dispatch problem using particle 

swarm optimization”, in Proc. 2009 International con-

ference on Power Systems, pp. 1-5. 

[9] Karim Karoui, Ludovic Platbrood, Horia Crisciu, and 

Richard A. Waltz, “New large-scale security constrained 

optimal power flow program using a new interior point 

algorithm”, in Proc. 5th International Conference on Eu-

ropean Electricity Market, pp. 1–6, 2008. 

[10] Abdel-Moamen M. A, Narayana and Prasad Padhy, “Op-

timal power flow incorporating FACTS devices-

Bibliography and survey”, in Proc. 2003 IEEE Transmis-

sion and Distribution Conference and Exposition, pp. 

669-676. 

[11] S. S. Salament, H. T. James, and F. H. Eugene, “On-line 

optimal reactive power plow by energy loss minimiza-

tion”, in Proc. 35th IEEE Decision and Control, pp. 3851 

– 3856, Dec. 1996. 

[12] M. Clerc, Particle Swarm Optimization, London, ISTE, 

2006. 

[13] Zwe-Lee Gaing, Xun-Han Liu, “New   constriction   

particle swarm   optimization for   security-constrained 

optimal power  flow solution”, in Proc. 2007 Interna-

tional Conference on Intelligent Systems Applications to 

Power Systems, pp. 1-6. 
 

                                                           
H. T. Hassan and S. R. Zafar are with Department of Electrical Engineering, 

University of Lahore, Pakistan. (e-mail: tehzibulhasan@gmail.com; 
shahrukhzafarsuri@gmail.com) 

R. Zafar is with Department of Electrical Engineering, University of Engi-

neering and Technology, Lahore, Pakistan. (e-mail: raheel-

zafar7@yahoo.com). 

S. A. Mohsin is with Department of Electrical Engineering, University of 

Faisalabad, Pakistan. (e-mail: syed_alimohsin@yahoo.co.uk) 

Table III 

Settings of Control Variables for Ward-Hale 6-bus System  

T 15 30 40 

Ploss (MW) 7.6523 7.5787 7.5703 

PGEN, 2 (p.u) 0.2816 0.2776 0.2964 

V2 (p.u) 1.0676 1.0811 1.0701 

T6 1.00 0.94 0.96 

T4 1.00 0.99 1.00 

Qcomp,4 (p.u) 0.30 0.35 0.24 

Qcomp,6 (p.u) 0.44 0.34 0.47 

 

Table IV 

Settings of Control Variables for IEEE 30-bus System  

T 18 30 40 

Ploss (MW) 4.0019 3.9522 3.8497 

Qcomp,10 (p.u) 0.2200 0.2200 0.2700 

Qcomp,24 (p.u) 0.2600 0.2000 0.2000 

T28 0.9800 0.9800 0.9900 

T4 0.9800 0.9800 0.9800 

T6 0.9800 0.9800 0.9800 

T9 0.9800 0.9800 0.9700 

V13 (p.u) 1.0250 1.0250 1.0250 

V11 (p.u) 1.0250 1.0250 1.0250 

V8 (p.u) 1.0250 1.0250 1.0250 

V5 (p.u) 1.0250 1.0250 1.0250 

V2 (p.u) 1.0250 1.0250 1.0250 

PGEN, 13 (p.u) 0.3745 0.3195 0.3816 

PGEN, 11 (p.u) 0.2806 0.2906 0.2523 

PGEN, 8 (p.u) 0.5422 0.4867 0.5347 

PGEN, 5 (p.u) 0.4937 0.4860 0.4992 

PGEN, 2 (p.u) 0.5114 0.7799 0.7657 

 


